
MICROSERVICES ARCHITECTURE
& TEST STRATEGIES

A Complete Guide

www.zucisystems.com

www.zucisystems.com

INDEX

Why microservices?

Chapter 1 Microservices – The basics 03

04

Chapter 3
How does microservices
differ from monolithic?

05

Chapter 4
Challenges in a microservices
set up

08

Chapter 5
Approaches to automated
microservices tes�ng 10

Chapter 6
Microservices Tes�ng -
Best Prac�ces

12

Chapter 2

What is Microservices?

Microservices are an alternate approach to applica�on development in which a large

applica�on is built in isola�on, as a suite of granular components or services. Each

component carries a specific func�onality or a task or business goals and uses precise

APIs as a means of communica�on to talk to other services.

Mar�n Fowler, a so�ware developer and a thought leader in his book, stated, "A

microservice architectural style is an approach to developing a single applica�on as a

suite of small services, each running in its own process and communica�ng with

lightweight mechanisms, o�en an HTTP resource API. These services are built around

business capabili�es and independently deployable by fully automated deployment

machinery."

Why the buzz?

Though microservices are a rela�vely new concept, it gained its momentum when

Amazon, Ne�lix, Uber became trailblazers of the architecture. They were the first to

adopt this architecture and have led others with an example by mastering the areas of

DevOps and Con�nuous Delivery, thereby driving their organiza�ons to greatness.

Opera�ng on a microservices architecture, Ne�lix and Amazon engineers today are

able to deploy code thousand �mes a day and la�er every 11.6 sec, allowing them to

make a successful transi�on to con�nuous deployment.

MICROSERVICES - THE BASICS

01

www.zucisystems.com I 03

DID
YOU
KNOW?

By 2022, 90% of all new apps will feature microservices

architectures that improve the ability to design, debug,

update and leverage third-party code, according to

IDC research.

Much of the migra�on to the world of microservices begins with developers wan�ng

for more applica�on stability during recurrent code updates or as an easy way out of

dependencies or the ability to scale without compromising resources.

A monolithic applica�on becomes an obstacle to managing codebase when the teams

want to deploy con�nuously or when they want to add new features as needed. It can

scale only in one dimension, running mul�ple versions of the applica�on as the

volume of transac�on increases.

Microservices, unlike a monolithic applica�on, enable you to build services using

diverse technologies, and the developers in microservices need not manage code in

one place as they do with monolithic apps. Instead deploying a whole applica�on

update, they can quickly release code to the container.

The architecture also makes much sense in situa�ons where the teams are working on

a complex applica�on and are spread across geographically, where it becomes cost-

effec�ve and easy to manage and scale the app seamlessly.

Making the right choice!

Despite the charm of microservices, the monolithic applica�on s�ll serves quite well

for a lot of non-complex applica�ons. Thus, making the right choice of architecture

depends on various factors like complexity, developer exper�se, and management

capabili�es. The next chapter of the guide will throw some light on how microservices

differ from a monolithic applica�on.

WHY MICROSERVICES?

02

The golden rule: can you make a change to a service

and deploy it by itself without changing anything else?

― Sam Newman, Building Microservices

www.zucisystems.com I 04

“

HOW DOES MICROSERVICES AND
MONOLITHIC DIFFER FROM
EACH OTHER?

03

www.zucisystems.com I 05

Client Business Logic Data Access
Layer

Database

MONOLITHIC ARCHITECTURE DIAGRAM

As you can see in the image, A monolith is built as a large system with a single code

base and deployed as a single unit; the components in monolithic applica�ons are

�ghtly coupled. This architecture makes itself a tough candidate for con�nuous

deployment, scalability, and management of the applica�ons. The most common

drawbacks of following a monolithic architecture include,

Reliability: An error in any one of the modules in the applica�on can shut down the

rest of the system

Frequent update: Due to a single giant code base and �ght coupling of the

components, the en�re applica�on would have to undergo deployments for each

update

Homogeneous Technology: A monolithic applica�on will have to follow the

same tech stack throughout. Hence, changes in the tech stack will be an expensive

task.

www.zucisystems.com I 06

MICROSERVICES ARCHITECTURE DIAGRAM

On the other hand, microservices are made of loosely coupled, independent services.

Elementally, the architecture consists of small autonomous components that can be

scaled and deployed independently. This built-up structure gives rise to many

benefits, one being the ability to test these independent services individually, and the

capability to adapt to any changes made in the applica�on on its journey towards

con�nuous deployments is another.

However, the shi� to microservices comes with a price, par�cularly when it comes to

the monitoring of the applica�on and the toll it can take on the development team

undergoing the shi�. Despite its fault tolerance capabili�es, the ability to iden�fy

failures in microservices-based applica�ons via manual monitoring and tes�ng

methods remains a difficulty. This hardship is primarily due to the architecture's

decoupled nature and undefined boundaries

Client

Microservice

Microservice

Microservice

Microservice

Database

Database

Database

Database

When services are loosely coupled, a change to one service

should not require a change to another.

― Sam Newman, Building Microservices “

www.zucisystems.com I 07

How to decide?

Migrants to the world of microservices will have to consider factors such as the team

exper�se and tes�ng and monitoring tools.

Your team will need the right exper�se to build, deploy, and manage microservices-

based applica�ons. If your developers are used to monolithic architecture and do not

have the right skills, working with microservices can become counterintui�ve.

And, once the applica�on is made into loosely coupled components, you'll have more

moving parts to track and fix. Without the right monitoring and tes�ng tools in place,

adop�on can become a nightmare.

Generally, monolithic architectures are the right choice for small, simple app

development. Alterna�vely, a microservices architecture is a right choice when you're

developing for complex systems.

Ask yourself these ques�ons before making a choice:

 Do you have well-defined boundaries for applica�on?

 Does your team have microservice exper�se?

 Do you have the right infrastructure for independent services?

 Have you evaluated the business risks involved?

If you are working in an organiza�on that places lots of
restric�ons on how developers can do their work, then
microservices may not be for you.

― Sam Newman, Building Microservices “

www.zucisystems.com I 08

CHALLENGES IN A
MICROSERVICES SETUP

04

Microservices can provide be�er flexibility and performances, but the downside of

the applica�on is that it can complicate a few basic tasks like tes�ng, monitoring, etc.

As an organiza�on transi�oning to this distributed architecture, you need to

understand the compelling challenges that come along with it.

Let's delve into a few challenges with microservices architecture.

Communica�on hiccups:

In this distributed architecture set up, a microservice may need to talk to another
microservice or require access to other microservice for a service or in need of data.
These scenarios could become favorable for errors in-network and container
configura�ons, errors in request or response, network blips, and errors in security
configura�ons, configs, and much more.

This communica�on hiccups could pose some challenges when mul�ple streams of
tes�ng are ac�ve in an integra�on tes�ng environment.

Mul�ple security gates: Components in a microservice architecture operate and

communicate in both internal and external environments, which can make

monitoring and security a more significant challenge.

With many moving parts in place -- e.g., services, components, APIs, etc., it merely

increases the poten�al a�ack surface. And, unlike the well-defined security

boundaries that a firewall provides a monolithic app, there is no such defini�ve

boundary with cloud-based microservices apps.

The biggest single challenge arises from the fact that, with
microservices, the elements of business logic are connected by some
sort of communica�on mechanism … rather than direct links within
program code.

- Randy Heffner, Principal Analyst at Forrester“

www.zucisystems.com I 09

Version compa�bility: Retaining the older versions of service becomes tricky

when teams design, develop and deploy microservices independent of one another.

This is problema�c because when it comes to versioning, service compa�bility may be

lost. Teams have to keep in mind to design a microservice that supports version

compa�bility.

Manual monitoring: While microservices make sure that applica�on is up and

running even when there is a network outrage or a system failure, the decoupled

nature of the architecture turns par�cularly complex to iden�fy failures through

manual monitoring and tes�ng methods.

The answer to this is incorpora�ng automated monitoring and tes�ng tools. Manual

monitoring or tes�ng of too many services simply won't cut. These are some of the

common challenges in a microservices architecture; the next chapter of the guide will

talk about microservices test strategies

www.zucisystems.com I 10

Tes�ng of the microservices-based applica�on is complicated as the services work

independently and extend communica�on through API calls. The test team assigned

to test these services must well be aware of the given service, its dependencies, and

roll out an effec�ve test strategy accordingly.

There are four conven�onal approaches to test microservices: unit tests, integra�on

tests, contract tests, and component tests.

Unit tes�ng: The objec�ve of unit tes�ng is to isolate wri�en code to test and

validate if the code of each applica�on component is in line with the necessary

business logic. In terms of volume, they represent the largest number of tests.

To test microservices flawlessly, you need to keep your test units limited. Large units

of distributed services will produce variable complex tests, as those services scale

their resource u�liza�on over �me. Unit tests can be automated depending upon the

language and the framework used in the service.

Integra�on tes�ng: Mul�ple microservices interact and execute together to

achieve a business goal. This cri�cal part of microservice architecture tes�ng relies on

the proper func�oning of inter-service communica�ons.

Integra�on tes�ng validates the connec�vity and flow of data between two or more

components and its dependencies and iden�fies bugs within the interac�on. Testers

must ensure requests and communica�on channels that flow through the services

work seamlessly, and the dependencies between the services are present as

expected.

APPROACHES TO AUTOMATED
MICROSERVICES TESTING

05

www.zucisystems.com I 11

Contract tes�ng: Contract-driven tes�ng, o�en called as contract tes�ng is

different from the func�onality tests done so far. The contract under tests establishes

a rela�onship between a client seeking data, who is the consumer, and the API on a

server that provides the data, the provider.

This contract-driven tes�ng process uses tests from consumers to validate the

provider, or API publisher. The consumers of API publish the expected behaviors to a

computer program, which stands up a mock server that can verify the tests pass.

To pass the test, the calls and responses (provider) must produce the same results

every �me, even if the service is altered or upgraded. Albeit, there is a flexibility to add

more func�onality to the responses as required; these addi�ons must not break the

service func�onality.

For contract tes�ng on microservices, both the service producer and consumer must

have the most up-to-date version of the contract.

Component tes�ng: Component tests are used to test the components or

services of an applica�on in isola�on. It checks and validates the microservices in

isola�on by crea�ng mock services that mirror the dependent system's responses and

behavior, the process is also called as service virtualiza�on/stubbing/mocking.

Virtualized services are replicas of systems that new applica�ons depend on. They are

created to test how well the applica�on and systems integrate. This process removes

a significant development bo�leneck by ensuring testers don't have to wait to begin

tes�ng. It allows teams to release products with fewer defects, on-�me without

disrup�ng service.

The next chapter will give some �ps on how to go about addressing

microservices tes�ng.

Ge�ng integra�on right is the single most important aspect of the
technology associated with microservices in my opinion. Do it well,
and your microservices retain their autonomy, allowing you to
change and release them independent of the whole. Get it wrong,
and disaster awaits.

- Sam Newman, Designing Fine-Grained Systems“

www.zucisystems.com I 12

Strengthen your system integra�on test environment: In the pursuit of
con�nuous delivery, teams want to deploy new features as o�en as possible and, they
run automated E2E tests to check GUIs before deploying to produc�on thoroughly.
This way, the team can simply deploy a change to the system integra�on test (SIT)
environment, run the tests, and wait for the results.

But imagine someone rolls out a new GUI element during the test run, the chances are
that it can cause a test failure. And a�er some point in �me during the re-run, the odds
are even high that different sets of sub-tests could fail again. This happens because
repe��ve tests act as change detec�on making the tests to report those changes as a
failure.

The remedy to this problem is strengthening the SIT environment, and this can be
done by reducing the number of unique but similar microservices that developers
create and inves�ng in be�er update deployments.

80/20 rule: Tradi�onal end-to-end tes�ng, covering all possible workflows that a
real user might perform will not be as effec�ve as it is with other so�ware
architectures. A be�er approach would be making a contract with your consumers
and apply 80/20 rule: invest 20% of your tes�ng efforts on 80% of the areas your
users usually consume.

Test in produc�on: Microservices are made of fluid shi�ing rela�onships, where
it's almost uncertain on the ways how these microservices are going to be consumed
and how they are going to behave. The best prac�ce is to shi�-right into tes�ng in
produc�on.

Monitoring tools: With the monitoring tools in place, you can trace the issues in
produc�on at run�me and can react quickly. Tracing even helps to go back to the last
known good version of the service before it slips to the hands of users.

MICROSERVICES TESTING –
BEST PRACTICES

06

Final thoughts:

Some engineering teams may feel uncomfortable in their ini�al
stages to take microservices route to their DevOps journey.
However, depending on the team’s exper�se, listening carefully to
the customer feedbacks and having the right test strategies in place,
they can so�-pedal into the DevOps world of ambiguity and
uncertainty.

Headquarters – Chicago, U.S.
+1 (331) 903 – 5007

www.zucisystems.com sales@zucisystems.com

Office – Chennai, India
+91 (44) 49525020

